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1 An Introduction to VIX and SPIKES

The primary volatility index quoted in the financial press has been VIX, since it was first
created in 1993. The construction of VIX was changed in 2003 to take advantage of conceptual
breakthroughs in theoretical replicating strategies for over-the-counter variance swaps. Since
its re-design in 2003, V IX2 has been the cost of a portfolio of out-of the money (OTM)
options written on the S&P 500. The weighting scheme combines the mid-point of bid and
ask SPX option quotes at almost all of the OTM strikes and for two maturities which straddle
30 days. The across-strike weights are designed to equate the cash gamma contribution from
each option, while the across-maturity weights are designed to target a 30 day forecasting
horizon. The option quotes used are updated very minute. The emphasis on bid and ask
quotes rather than on trades has lead prominent academics to question whether VIX can
be manipulated, see [5]. The excessive volumes in out-of-the-money SPX options on VIX
settlement were found to have no other explanation.

In response to the controversy surrounding possible VIX manipulation, an alternative volatil-
ity index called SPIKES has been recently introduced. In this paper, we introduce the
SPIKES volatility index, primarily by comparing it to VIX, which is much more well known.
Like VIX, SPIKES seeks to forecast S&P 500 volatility over a 30 day horizon. SPIKES uses
the same weighting scheme across strikes and maturities as VIX, but differs from VIX in
several ways:

• Dividend Timing Difference: SPIKES is calculated from prices of OTM options written
on the SPY exchange traded fund (ETF), rather than from OTM SPX option prices.
The underlying SPY ETF pays dividends quarterly, whereas the 500 stocks comprising
S&P500 pay dividends much more frequently.

• Early Exercise Premium: SPY options have an American-style exercise feature, whereas
SPX options, have a European-style exercise feature.
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• Trade Prioritization: SPIKES uses a price-dragging technique to select option prices in
the portfolio which gives priority to trades. This leads to greater stability over time in
the option prices and hence to the volatility index.

• Weight Updating: The weights on OTM option prices in SPIKES are updated on the
order of seconds, rather than minutes.

In this paper, we focus on the difference between SPIKES and VIX that arises just from
differences in dividend timing and in exercise styles. We decompose the difference between
SPIKES and VIX into the sum of a dividend timing difference (DTD) for European options
and from the early exercise premium (EEP) for options on an ETF paying dividends quarterly.
Due to the inclusion of both puts and calls in the two volatility indices, the DTD for European
options can have either sign even in months where no quarterly dividend is paid. In contrast,
under positive interest rates, the EEP under quarterly dividends is always positive, even in
the 8 months of the year where no quarterly dividends is paid. Under the hypothetical case of
zero interest rate, the EEP vanishes in the 8 months of the year when no quarterly dividends
are paid and becomes positive again in the other 4 months.

On average, VIX is an upward biased forecast of subsequent realized volatility. Since the DTD
can either add to or subtract from the non-negative EEP, it is not obvious ex ante whether or
not SPIKES has higher upward bias than VIX. Historically, the difference between SPIKES
and VIX has been positive, but small in magnitude. One can use an option valuation model
to gauge how large this difference can become as US dividend yields and interest rates rise
from their current positive but historically low levels.

In a hypothetical case of all 500 stocks in the S&P500 paying zero dividends, the DTD is
clearly zero, while the EEP is positive under positive interest rates. An increase in dividend
yields creates a non-zero DTD which again can have either sign. In standard valuation models
such as Black Merton Scholes (BMS), the American call EEP increases with dividends and
decreases with interest rates, while the American put EEP has the opposite behavior in
dividends and interest rates. As a result, an increase or decrease in dividends has a mixed
effect on the overall EEP across calls and puts, as does an increase or decrease in interest
rates. The main objective of this paper is to use the benchmark Black Scholes model to
calculate the magnitudes of the DTD and the EEP, and thereby to assess the magnitude of
future differences between SPIKES and VIX.

We begin with a data analysis in the next section which shows that the two volatility indices
have behaved very similarly in the past. We therefore turn to the harder question of whether
they are likely to behave similarly going forward. The main objective of this paper is to use
the benchmark BMS model to assess whether SPIKES is likely to continue tracking VIX going
forward. We first examine the simpler case when the SPY ETF is not paying a quarterly
divided before the SPY options mature. We then address the determination of the DTD
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and the EEP in the BMS model when the underlying SPY ETF pays a single proportional
dividend before maturity. We also examine the behavior of the early exercise boundary
and American option vegas in the BMS model with and without a quarterly dividend. Our
numerical results indicate that the difference is likely to remain small so long as 30 day
interest rates and annualized dividend yields both remain below 10 % per year.

2 Data Analysis from 2005 to 2018

An analysis of data from 2005 to 2018 shows that the inclusion of the positive EEP in the
SPIKES calculation has had a negligible impact on the average SPIKES level. The average
values of SPIKES and VIX have hardly differed during this sample period. The simplest
explanation for this negligible difference is that all of the options used in the volatility index
calculations are OTM, and hence their EEP is smaller than if ITM option prices were used.
It also helps that US interest rates have averaged lower in this period than they did in the
late 1970’s, when inflation was larger. It is possible that a return of higher interest rates
or a sharp increase in dividend payouts would increase the gap between SPIKES and VIX.
One of the primary purposes of this paper is to use the benchmark Black Scholes model to
assess the potential impact of a rise in interest rates or dividend yields on the gap between
SPIKES and VIX. One can also consider the use of an alternative American option pricing
model that is consistent with the volatility skew. We thought it prudent to begin with the
perhaps overly simple but familiar Black Scholes model. We could then use the results of
this preliminary investigation to then assess whether a more complicated but more realistic
option valuation model would change our qualitative conclusions.

Table 1 indicates that the mean level of SPIKES at 18.9 has been slightly higher than that
of VIX at 18.7. This gap is probably due to the EEP, but one should also recall that SPX
and SPY have different dividend payout frequencies. The two volatility indices also have
very similar standard deviations and skewness. The percentage changes in the two volatility
indices are virtually indistinguishable over daily, weekly, and monthly horizons. The two
volatility indices have had very similar, strongly negative correlations to the S&P 500 over
the 3 different horizons. Moreover, the correlation between both levels and percentage changes
in the two volatility indices is very close to 1. In different S&P 500 return regimes, the two
volatility indices have had nearly identical behavior on average.

As reported in Table 2, if SPIKES log-differences are regressed on VIX log-differences with
no intercept, then the estimated slope as well as the R2 of the regression are both very close
to 1. This result holds for daily, weekly, and monthly horizons. The table also shows the
result of regressing SPY on SPX after adjusting for the different dividend payout times:

In Figure 1, the regression fit of SPIKES returns on VIX returns is plotted for weekly and
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Statistics Index Daily Ret. Weekly Ret. Monthly Ret.

Vol. Index VIX, SPIKES VIX, SPIKES VIX, SPIKES VIX, SPIKES
Mean 18.7, 18.9 0.28%, 0.28% 1.1%, 1.1% 3.1%, 3.0%
Std. Dev. 9.2, 9.2 123%, 123% 115%, 112% 96%, 94%
Skewness 2.5, 2.5 2.2, 2.9 2.8, 2.8 2.7, 2.9
SPX Corr. -51% , -50% -72%, -71% -71%, -71% -69%, -69%
VIX Corr. 1, 99.9%, 1, 97.4%, 1, 98.5% 1, 99.1%

Table 1: Descriptive statistics for VIX, SPIKES and their returns from 2005 to 2018

Asset Pair Daily Return R2 Weekly Return R2 Monthly Return R2

SPIKES vs. VIX 0.95 0.97 0.98
SPY vs. SPX 0.98 0.99 1.00

Table 2: The R2 value when SPIKES returns are regressed on VIX returns (top row) and
SPY returns are regressed on SPX returns (bottom row).

monthly log-differences.

In Figure 2, the percentage daily difference is plotted. It is clear from the picture that
SPIKES is higher than VIX especially around quarters every year, corresponding to SPY
ex-dividend dates.

Figure 3 examines the difference between SPIKES and VIX by calendar month; the difference
is highest in the months which contain SPY ex-dividend dates (February, May, August and
November). The early exercise premium is largest one week before expiry.

3 Computing SPIKES

The weighting scheme for both SPIKES and VIX is based on a theoretical result for repli-
cating the payoff on a variance swap via a static position in OTM European-style index
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Figure 1: Linear Regressions of SPIKES Returns on VIX Returns

Figure 2: Percentage difference between SPIKES and VIX from 2005 to 2018
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Figure 3: Difference between SPIKES and VIX by calendar months

options combined with dynamic trading in futures written on their underlying index. To
ease one’s understanding of the construction of the two volatility indices, we first introduce 2
concepts called TVIX and TSPIKES which stand for theoretical VIX and theoretical SPIKES
respectiveley.

For TV IX2, the cost of the theoretical replicating portfolio is:

TV IX2 =
365

30

1

B

[∫ F

0

2

K2
p

p(Kp)dKp +

∫ ∞
F

2

K2
c

c(Kc)dKc

]
(1)

where 365/30 is an annualization factor based on calendar days, B is the price of a zero
coupon bond paying $1 in 30 days, and F is the 30 day forward price of S&P500, which is
approximated by the futures price in practice. In (1), p(Kp) and c(Kc) respectively denote
market prices of 30 day European-style OTM puts and calls written on the S&P500 Index
struck at Kp ∈ [0, F ] and Kc > F respectively.

Assuming no frictions, deterministic interest rates, and a strictly positive and continuous
futures price process, TV IX2 is the cost of replicating a fictitious variance swap paying
the quadratic variation of the log futures price at maturity. Academics sometimes wrongly
describe this replication strategy as model-free, but what they should be writing is that
this replication is not as model-dependent as the standard approach for replicating path-
dependent derivatives. Under either stochastic interest rates and/or jumps in price and/or
non-negative futures prices, the terminal quadratic variation of the log futures price cannot
be theoretically replicated without further assumptions.
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The magnitude of the variance swap replication failure increases as we move from theory
towards practice. In practice, the actual variance swap has discrete monitoring, most often
daily, and often squares discrete time log price relatives of SPX. not its futures price. Since
observed option prices are only at discrete strikes in practice, The above TV IX2 integral
formula has to be approximated by either fitting an implied volatility smile across strikes
or by replacing the integral with a sum arising from truncation and discrete spacing of
strikes. When a sum is used, a correction term is needed to capture the fact that F does
not fall on a strike. Since observed option maturities are only rarely exactly 30 days, further
approximation error is introduced by the necessity of interpolating across two maturities
straddling 30 days. When:

• the annualization factor is based on minutes rather than days

• the integral is replaced by a sum with a correction term

• the maturity interpolation is linear

then the approximation of TV IX2 is called V IX2. As an aside, one can develop both a
theory and a target variance swap like payoff such that V IX2 without the small correction
term is the exact replication cost, as opposed to an approximation of the replication cost of
a theoretical or exact variance swap.

TSPIKES is based on the same theoretical weighting scheme as TVIX, but where European-
style options on the S&P500 Index are necessarily replaced by American-style options on
SPY, which is the S&P500 ETF. Hence:

TSPIKES2 =
365

30
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]
(2)

where P (Kp) and C(Kc) respectively denote market prices of the American-style OTM puts
and calls written on the SPY ETF struck atKp ∈ [0, F ] andKc > F respectively. Unlike with
TV IX2, there is no known theory under which TSPIKES2 is the initial cost of replicating
a theoretical variance swap. The quarterly dividends paid by the SPY ETF can be handled
without introducing a model, but current knowledge is such that the early exercise feature
requires the introduction of a model to remove the EEP. The TSPIKES integral formula
can also be approximated in practice by a better annualization, by truncation and discrete
spacing of strikes, and by linear interpolation across two maturities straddling 30 days. This
approximation of TSPIKES2 is called SPIKES2.

In variance swap replication theory, the market prices of the European options are observed
directly. As a result, the only role of the underlying forward price F is to separate OTM put
strikes from OTM call strikes. The underlying forward price is not needed to calculate option
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premia from a model as the option premia are supposed to be directly observed. Likewise,
the American option premia in TSPIKES are supposed to be directly observed. When future
values of SPIKES are to be compared to future values of VIX, we don’t observe future prices
of the component options. However, we can use an option pricing model to project these
future option prices onto future relevant stochastic state variables such as spot SPX or SPY,
and/or an ATM implied volatility of SPX or SPY. We can then use the model to compare
future levels of SPIKES to future levels of VIX, conditional on given numerical values of the
relevant state variables.

When an American option on SPY is exercised early or at maturity, its payoff involves the
spot value of SPY, not its futures price. When option pricing models are used to determine
the EEP of a SPY option, it is easier to evolve the single spot price of the underlying rather
than to evolve the entire term structure of forward or futures prices. It is also easier to
assume that implied volatilities are constant across moneyness and calendar time rather
than to assume they vary with moneyness and stochastically over time.

When we assume that the only relevant stochastic state variable is the spot and that it has
constant proportional carrying costs and constant instantaneous volatility over time, we are
using the BMS model to price options. Consider first the pricing of European-style SPX
options in the BMS model. We assume for the rest of the paper that the dividends from the
500 stocks in SPX are continuously paid over time and that the annualized divided yield of
SPX is constant at some known level γ ≥ 0. We also suppose for the rest of this paper that
the riskfree interest rate is also constant at some known level r ≥ 0. Consider the calculation
of TV IX in the BMS model, when the current value of the underlying SPX is at some known
level X > 0, the constant proportional carrying cost is r − γ ∈ R, and the volatility of SPX
is constant at some known level σ > 0:

TV IX2 =
365

30

1

B

[∫ F
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pbs(X, γ,Kp)dKp +

∫ ∞
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2
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c

cbs(X, γ,Kc)dKc

]
, (3)

where pbs(X, γ,Kp) and cbs(X, γ,Kc) respectively denote the BMS model value of a European
put and call when SPX is at X > 0, with constant continuously paid dividend yield γ ≥ 0,
and for strikes Kp ∈ [0, F ] and Kc ≥ F respectively.

In this BMS model, TV IX2 is the constant instantaneous variance rate σ2. Note that
TV IX2 is independent of the inputs X, γ, r, and T that enter into the relative pricing of
each constituent SPX option. However, when we move from TV IX2 to V IX2, V IX2 gains
dependence on X, γ, r, and T due to the discreteness of strikes.

Before we move to the pricing of American-style SPY options, consider the theoretical re-
lationship between SPX and SPY when SPX has a constant continuously paid annualized
dividend yield γ ≥ 0 and SPY has a constant quarterly paid quarterly compounded annual-
ized dividend yield q ≥ 0. Consider the one year price relatives X1

X0
and Y1

Y0
when time 0 is just
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after SPY has paid a quarterly dividend. Let D0 be the price at this time of a pure discount
bond paying $1 in 1 year. Under the forward measure Q1, we have D0E

Q1
0

X1

X0
= e−γ, while

D0E
Q1
0

Y1
Y0

=
(

1
1+q/4

)4
. Equating the two expressions and solving for q:

q = 4(eγ/4 − 1).

TSPIKES2 =
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Cbs(Y, q,Kc)dKc

]
(4)

where P bs(Y, q,Kp) and Cbs(Y, q,Kc) respectively denote the BMS model value of an Amer-
ican put and call when SPY is at Y > 0, with constant quarterly paid dividend yield q ≥ 0,
and for strikes Kp ∈ [0, F ] and Kc ≥ F respectively.

Subtracting (3) from (4), we have:

TSPIKES2 − TV IX2 (5)

=
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]

Let (p/c)bs(Y, q,K) be the theoretical value of a European put or call on SPY. Suppose we
subtract and add (p/c)bs(Y, q,K) in (5):

TSPIKES2 − TV IX2 = εx(Y, q,K) + δd(X, Y ; γ, q,K) (6)

where the non-negative SPY option early exercise premium εx(Y, q,K) =
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]
and the sign-indefinite dividend timing difference δd(X, Y ; γ, q,K) =
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.

Since the SPIKES index is based on a 30 day horizon, there can be at most one quarterly
dividend payment from the underlying SPY ETF. When there is no quarterly dividend, the
call EEP vanishes. When there is one quarterly proportional dividend there is an explicit
exact formula for the EEP of an American call. For no dividends or one quarterly dividend,
we also develop an explicit approximation for the EEP of an American put.
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4 The Importance of the Early Exercise Premium

In this section, we investigate the magnitude of the early exercise premium embedded in
SPY options. The time series analysis has already indicated that the difference between the
two volatility indices is highest when the OTM options underlying SPIKES have a higher
probability of early exercise.

It is well known that when no dividends are expected before maturity, American call options
are never exercised early, As a result, during this time period, the difference between the two
volatility indices would be entirely due to the early exercise premium of put options. Carr
Jarrow Myneni[2] give the following representation for the initial Black Scholes[1] model
value of an American put’s EEP with expiry T , strike price K, and a non-dividend paying
underlying priced at S0:

e0(K) = rK

∫ T

0

e−rtN

 ln
(
B(t,K)
S0

)
− (r − σ2/2) t

σ
√
t

 dt (7)

Here, B(t,K) is the deterministic early exercise boundary for strike K and maturity T , which
has no known exact formula, but solves an integral equation.

Integrating over all of the OTM strikes K ∈ [0, F0] leads to the following difference between
SPIKES2 and VIX2:

TotE0 =

∫ F0

0

e0(K)dK = 2r

∫ F0

0

∫ T

0

1

K2
e−rtN

(
log B(t,K)

S0
− (r − σ2/2) t

σ
√
t

)
dt (8)

Theoretically, increasing the level of the short interest rate r raises each American put’s
EEP, after accounting for the increase in the early exercise boundary B(t,K), t ∈ [0, T ]. As a
result, the overall effect of an increase in the interest rate r on the cumulative EEP should be
positive. To determine the magnitude of this impact, note that the double integral in (8) can
only be computed once we have some expression for the early exercise boundary Bt . In the
theoretical part of this paper, we will give an analytic expression for the double integral in
(8) when approximating each early exercise boundary B(t,K), t ∈ [0, T ] with an exponential
function (see Ju [6]).

In Figure 4, T-bill rates from 2003 are plotted.

In general, the EEP embedded in American call and put prices depends not only on the
interest rate but also on the dividends, which for SPY are paid quarterly. When the underly-
ing stock pays dividends, American Call options have positive probability of being exercised
early. Since SPY pays dividends quarterly, we have to take dividends into account when
computing the total difference between SPIKES2 and VIX2 .
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Figure 4: Interest rates (treasury) from 2003 to 2018

Figure 5: SPY quarterly dividends from March, 31, 2005 to September 28, 2018
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In Figure 5, the dividend levels and yields are plotted for SPY since its inception.

We also derive approximate analytic formulas for the difference between SPIKES2 and VIX2

under the Black Scholes model, allowing for a discrete proportional dividend paid before ma-
turity. Again, exponential functions are used to approximate the true early exercise boundary
(see Ju [6]). To gauge the magnitude of the approximation error, we use finite differences
on the Black Scholes PDE with a discrete proportional dividend, qS at Td, see Gottsche and
Vellekop [4], to numerically determine both the early exercise boundary and American option
prices. Note that the total difference that we compute will be an upper bound to the actual
difference between SPIKES2 and V IX2 since the two volatility indices are computed by both
truncating the integrals and discretizing strike prices.

5 American Option Pricing When its Underlying ETF
Pays a Single Proportional Dividend Before Maturity

In this section, we consider the Black Scholes model when the underlying risky asset pays a
single proportional dividend before maturity. The continuously compounded interest rate is
constant at r > 0. Let St be the spot price of this underlying risky asset at time t ∈ [0, T ].
Thee risk-neutral dynamics of S are given by:

dSt = rStdt+ σStdWt− δ(t− TD)Dtdt

whereDt = qSt, q is the proportional dividend rate and δ is the Dirac delta function. Consider
American call and put options with expiration date T and strike prices Kc, Kp respectively.
It is well known that if the underlying stock pays no dividends between the valuation time t
and the options maturity date T , then an American call has the same price as a European
one i.e. CA(t, T,Kc) = CE(t, T,Kc), where CE and CA denote the price of an American
and a European call respectively; In contrast, American puts have a positive early exercise
premium. We can write

PA(t, T,Kp) = PE(t, T,Kp) + eP (t,Kp) (9)

where PE and PA denote the price of an American and a European put respectively. Here,
eP (t) denotes the early exercise premium at time t of the American put. The put should be
exercised at time t if and only if its underlying stock’s price is in the exercise region, i.e. if
St < Sp(t) where Sp(t) denotes the early exercise boundary of the put.

The value u(t, St;K,T ) of an American option can be shown to solve the following partial
differential equation ( PDE)

∂u(t, St;K,T )

∂t
+ (r − δ(t− TD)q)St

∂u(t, St;K,T )

∂St
+

1

2
σ2S2

t

∂2u(t, St;K,T )

∂S2
t

= ru(t, St;K,T )

12



where TD is the dividend date. To obtain the correct unique value, boundary conditions must
also be applied. To solve this PDE numerically, we used the Crank-Nicholson finite difference
scheme.

Note that the above PDE is exactly the same as the PDE for the non-dividend case where we
need only set q = 0. For the American call option, it is not necessary to numerically solve the
above PDE. It can be proven, see [7], that the American call should only be exercised early,
if it is sufficiently in the-money just before the dividend is paid (i.e. on the cum-dividend
date). Hence, the American call has the same value as a Bermudan call with exercise dates
{Td, T}. A closed form formula for the American call value is derived in [7] under this setting
and is given by:

CA
1 (t, S,K, T ) = (1− q)SN2

(
d1 (t, T, (1− q)S,K) ,−d1

(
t, Td, S, S

)
;−
√
Td
T

)

−Ke−rTN2

(
d2 (t, T, (1− q)S,K) ,−d2

(
t, Td, S, S

)
;−
√
Td
T

)
+SN

(
d1
(
t, Td, S, S

))
−Ke−rTdN

(
d2
(
t, Td, S, S

))
,

where d1 (t, T, x, y) =
ln x
y
+(r+σ2

2
)(T−t)

σ
√
T−t and d2 (t, T, x, y) =

ln x
y
+(r−σ

2

2
)(T−t)

σ
√
T−t and S is such that

S −K = CE
0 (t, (1− q)S,K, T ), (10)

where CE
0 (t, S,K, T ) is the price at time t of an European Style call with no dividends with

strike price K, expiration date T on the underlying priced at S. Note that (10) must be
solved numerically for S, using bisection for example. The pricing formula for the American
call is in closed form once S is obtained. The early exercise premium of a single American
call struck at K is given by:

ec(t,K) = e−r(Td−t)EQt
[
(STd −K)1{STd>K}

]
− e−r(T−t)EQt

[
(ST −K)1{STd>K,ST>K}

]
(11)

Straightforward computations give:

ec(0, K) = SN
(
d1
(
t, Td, S, S

))
−Ke−rTdN

(
d2
(
t, Td, S, S

))
−(1− q)SN2

(
d1 (t, T, (1− q)S,K) , d1

(
t, Td, S, S

)
;−
√
Td
T

)

+Ke−rTN2

(
d2 (t, T, (1− q)S,K) , d2

(
t, Td, S, S

)
;−
√
Td
T

)
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Figure 6: Early exercise boundary curves for different levels of the risk free rate r and fixed
dividend rate q.

In the case of an American put, we numerically solve the Black Scholes PDE and obtain the
corresponding early exercise boundary. The put prices and exercise boundary obtained by
applying the finite difference scheme will be referred as true values, even though small errors
arise via truncation and discretization.

In Figures 6 and 7, we plot the early exercise boundary for an American put with T = 1

month, and Td = 1/2 month, for various values of q and r.

6 Approximating American Put Prices and Exercise
Boundary

In this section, we first consider a single American put written on an ETF paying a single
discrete proportional dividend qS at the ex-dividend date Td < T . This ex-dividend date is
crucial in the definition of the early exercise boundary, which jumps at time Td. Indeed, after
time Td the option reduces to an American put written on a non-dividend paying asset.

As a first approximation for the American put’s Black Scholes value, we compute the price
of the corresponding Bermudan put with exercise dates {Td, T}. By following a similar proof
to that of [7], we can prove that the Black Scholes model value at time t for this Bermudan
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Figure 7: Early exercise boundary curves for different levels of the dividend rate q and fixed
risk free rate r.

put is given by:

PB
1 (t, S,K, T ;S) = Ke−rTN2

(
−d2 (t, T, (1− q)S,K) , d2 (t, Td, (1− q)S, S) ;−

√
Td
T

)

−(1− q)SN2

(
−d1 (t, T, (1− q)S,K) , d1 (t, Td, (1− q)S, S) ;−

√
Td
T

)
+Ke−rTdN (d2 (t, Td, (1− q)S, S))− SN (d1 (t, Td, (1− q)S, S)) ,

where S is defined implicitly by

K − S = PE
0 (t, S,K, T ). (12)

Here, PE
0 (t, S,K, T ) is the Black Scholes model value at time t of a European put with strike

price K, expiration date T , and written on a non-dividend paying underlying asset priced
at S. Note that the Bermudan put should only be exercised in Td, if it is sufficiently in the
money, just after the dividend is paid (i.e. on the ex-dividend date). Here, S is the critical
level at Td for the ex-dividend stock price.

The future value at T of the payoff of the above Bermudan put is given by

PB(T ) = er(T−Td) (K − STd)1{SxTd≤S} + (K − ST )+ 1{SxTd>S}
, (13)

where the superscript x in the stock price at Td indicates that it is ex-dividend.
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Once the critical level S is computed by solving (12), then the Bermudan put pricing formula
is obtained by taking expectations with respect to the risk-neutral measure Q and discounting
the time T payoff in (13).

When the Bermudan put pricing formula is used to approximate the American put price,
we are implicitly assuming that the early exercise boundary is flat at 0 after the dividend is
paid. Instead, the true boundary increases as t approaches T towards the strike price K; The
early exercise boundary is that of an American put written on a non-dividend paying stock
in [Td, T ] We will assume in what follows that the early exercise boundary is approximated
by an exponential function of time, both before and after the ex dividend date. Under this
assumption, we derive a closed-form formula for the early exercise premium of an American
put. Hence, the true early exercise boundary Sp = {Sp(t), 0 < t < T} is approximated by

Sp(t) ≈


Ceht, if 0 < t < Td

Legt, if Td < t < T

(14)

where C,L, h, g are constant parameters. The approximation for the boundary is decreasing
in calendar time t before time Td, and increasing in t afterwards. The presence of a discrete
dividend makes our approximation of the boundary jump upward at time Td . The above
exponential specification induces an approximate linear behaviour before time Td if h has a
small absolute value or if Td << 1 as is the case here where Td < T ≈ 1/12.

We proceed in three steps:

1. we first restrict attention to the case t > Td and consider a constant boundary L by
setting g = 0.

2. we then apply a change of probability measure to derive a closed form pricing formula
in the case of an exponential growing boundary

3. we repeat the 2 steps above for the case when t < Td.

6.0.1 Step 1: Constant Boundary after Time Td

Since optimal early exercise is possible in the time interval [Td, T ], the American put value
in this time interval is the sum of the European Put price and the early exercise premium.
Since there are no dividends in the time interval [Td, T ], this early exercise premium is just
the present value of the interest earned on the strike price while the stock price is below the
early exercise boundary in the time interval [Td, T ], as shown in [2] .

16



Hence, the price at time t < Td of this hybrid American put is given by:

PH
1 (t, S,K, T ;L) = PE

1 (t, St, K, T, L) + e−r(Td−t)EQ
[
rK

∫ T

Td

e−r(u−Td)1{Su<Sp(u)}du

]
. (15)

The critical stock price at time Td is defined as the level for S such that the continuation
value of the hybrid put equals its exercise value; if we assume that the exercise boundary is
constant at this critical stock price after time Td, then L implicitly solves:

PH
1 (Td, L,K, T ;L) = K − L. (16)

We know that when the underlying asset is non-dividend paying, the value at time t ∈ [Td, T ],
of interest on the strike while S < L is

EQt
[
rK

∫ T

t

e−r(u−t)1{Su<L}du

]
. (17)

Consider a function f : R+ −→ R+ with f ∈ C2 . By applying Ito’s Lemma in integral form
we get

e−rTf(ST ) = f(St) +

∫ T

t

e−r(u−t)f ′(Su)dSu +

∫ T

t

e−r(u−t)[
f ′′(Su)

2
σ2S2

u − rf(Su)]du

= f(St) +

∫ T

t

e−r(u−t)f ′(Su)[dSu − rSudu]

+

∫ T

t

e−r(u−t)[
f ′′(Su)

2
σ2S2

u + rSuf
′(Su)− rf(Su)]du

and, taking conditional expectation at time t ∈ [Td, T ] ,

e−r(T−t)EQt [f(ST )] = f(St) + EQt
[∫ T

t

e−r(u−t)[
f ′′(Su)

2
σ2S2

u + rSuf
′(Su)− rf(Su)]du

]
. (18)

The value of the accrued interest on the strike for S < L may be written, for t ∈ [Td, T ] as

EQt
[
rK

∫ T

t

e−r(u−t)1{Su<L}du

]
= f(St)− e−r(T−t)EQt [f(ST )] , (19)

if and only if there exists a function f(S) solving the following ordinary differential equation
(ODE):

f ′′(Su)

2
σ2S2

u + rSuf
′(Su)− rf(Su) = −rK1{Su<L}. (20)
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It is straightforward to show that a solution exists for any constant L, and it is given by

f(S;L) =
K

r + σ2

2

[
1{S<L}

(
r +

σ2

2
− rS

L

)
+ 1{S>L}

σ2

2

(
S

L

)−2r/σ2
]
. (21)

The function f(S;L) can be seen as a final payoff at T whose time value at t matches the
value of the interest earned on the strike price K when S < L between t and T . Hence, the
price of the Hybrid Put with constant boundary at time t, for 0 ≤ t ≤ Td , is

PH
1 (t, St, K, T ;L) = PE

1 (t, St, K, T ) + e−r(Td−t)EQt
[
f(STd)− e−r(T−Td)f(ST )

]
. (22)

To solve for L, we must compute the above price at time Td i.e. conditioning on the infor-
mation available at time Td and then solving (16). Note that the value for L depends on the
strike price K of the option i.e. L = bK for some positive constant b.

The early exercise premium at time Td is given by:

ep(Td, K) = EQTd
[
f(STd)− e−r(T−Td)f(ST )

]
=

K

r + σ2

2

[
(r +

σ2

2
)
[
1{STd<L} − e

−r(T−Td)N (−d2 (Td, STd , L, T ))
]

−rSTd
L

[
1{STd<L} −N (−d1 (Td, STd , L, T ))

]]
+

K

r + σ2

2

σ2

2

(
STd
L

)−2r

σ2
[
1{STd>L} −N

(
d2 (Td, STd , L, T )−

2r

σ

√
T − Td

)]

and the early exercise premium ep(0, K) at time t = 0 is the discounted expected value of
ep(Td). It can be computed in a similar fashion and is given by

ep(0, K) = K
[
e−rTdN (−d2 (0, S0(1− q), L, Td))− e−r(T−Td)N (−d2 (0, S0(1− q), L, T ))

]
− K

r + σ2

2

rS0(1− q)
L

[N (−d1 (0, S0(1− q), L, Td))−N (−d1 (0, S0(1− q), L, T ))]

+
K

r + σ2

2

σ2

2

(
S0(1− q)

L

)−2r

σ2
[
N

(
d2 (0, S0(1− q), L, Td)−

2r

σ

√
Td

)
−N

(
d2 (0, S0(1− q), L, T )−

2r

σ

√
T

)]
.

Finally, the price at time t = 0 for the hybrid put is given by:

PH
1 (0, S0, K, T ;L) = PE

1 (0, S0, K, T ) + ep(0, K). (23)
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6.0.2 Step 2: Exponential Boundary after time Td

As an improved approximation, we can let the exponential growth coefficient g be non-zero;
in this case it is possible to obtain a closed form formula for the early exercise premium
according to the outcomes in [6]. In this paper, the constants L, g are computed by imposing
the value matching and smooth-pasting conditions. Here, we just impose value matching at
time Td. We set the terminal boundary level at K when t = T . Define S̃t := Ste

−gt. Under
the risk-neutral probability measure Q, the dynamics of S̃ are given by:

dS̃t = (r − g)S̃tdt+ σS̃tdWt− δ(t− TD)Dtdt.

We can use a similar approach to that of a constant boundary and find a function f̃ such
that

EQt
[
rK

∫ T

t

e−r(u−t)1{S̃u<L}du
]
= f̃(S̃t)− e−r(T−t)EQt

[
f̃(S̃T )

]
, (24)

which is obtained by solving:

f̃ ′′(S̃u)

2
σ2S̃2

u + (r − g)S̃uf̃ ′(S̃u)− rf̃(S̃u) = −rK1{Su<L}. (25)

We get:

f̃(S̃;L, g) =
2rK

σ2(p+ − p−)

[
1{S̃<L}

(
1

p+
− 1

p−
− 1

p+

(
S̃

L

)p+)
− 1{S̃>L}

1

p−

(
S̃

L

)p−]
, (26)

where p+, p− are the roots of P(p) = σ2

2
p2 + (r − g − σ2

2
)p− r.

Finally:

ẽp(Td, K) = EQTd
[
f̃(S̃Td)− e−r(T−Td)f̃(S̃T )

]
=

2rK

σ2(p+ − p−)

[
(
1

p+
− 1

p−
)
[
1{S̃Td<L}

− e−r(T−Td)N
(
−d2

(
Td, S̃Td , L, T

))]
− 1

p+

(
S̃Td
L

)p+ [
1{S̃Td<L}

−N
(
−d2

(
Td, S̃Td , L, T

)
− p+σ

√
T − Td

)]]

− 2rK

σ2(p+ − p−)
1

p−

(
S̃Td
L

)p− [
1{S̃Td>L}

−N
(
d2

(
Td, S̃Td , L, T

)
+ p−σ

√
T − Td

)]
,

and similarly we obtain the early premium at time t = 0.

In Figure 8, we plot the early exercise boundary suggested by finite differences along with
our two suggested approximations for r = 2%, q = 3% and Td = 1/2 month.
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Figure 8: Early exercise boundary after the dividend date Td: Finite difference (Red), Con-
stant approximation (Green), Exponential approximation (Blue)

6.0.3 Step 3: Exponential Boundary Approximation in [0, T ]

Consider now that early exercise is also possible within the time interval [0, Td] just before
the dividend is paid and assume that the boundary is approximated as in (14). The discrete
characteristics of the dividend make it possible to write the early exercise premium as:

EQ0
[
rK

∫ Td

0

e−ru1{Scu<Cehu}du+ rK

∫ T

Td

e−ru1{Sxu<Legu}du

]
= EQ0

[
rK

∫ Td

0

e−ru1{Scu<Cehu}du

]
+ EQ0

[
rKe−rTd

∫ T

Td

e−r(u−Td)1{Sxu<Legu}du

]
. (27)

Note that the dividend only enters the above formula because the cum-dividend stock price
appears in the indicator function in the first integral, while the ex-dividend stock price appears
in the indicator function in the second integral. Hence, similar computations can be derived
when the boundary is approximated before Td. Once the values for C, h are computed, then
the overall early exercise premium for an American put with strike K and expiration date T ,
can be computed as

ep(0, K) =

EQ0
[
f(Sc0;C, h)− e−rTdf(ScTde

−hTd ;C, h)+ e−rTdf(SxTde
−gTd ;L, g)− e−rTf(SxT e−gT ;L, g)

]
.

The expected values are calculated as in Step 2 using the cum-dividend initial price for the
first two terms. From Figures 6 and 7, it is evident that the behavior of the boundary is
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Figure 9: Early exercise boundary before the dividend date Td: Finite difference (Red),
Linear approximation (Green), Exponential approximation (Blue)

essentially linear before time Td and vanishes at time Td. By looking at the numerical results,
we surmised that the intercept is approximately at the level r

q
KTd. A linear boundary

approximation with the above properties would be y = r
q
K(Td− t). An exponential function

approximating this linear function is obtained by setting C = r
q
KTd and h = 1

Td
. Another

possible choice is available by matching the average slope of the area under the linear and
exponential boundary approximations.

In Figure 9, we plot the early exercise boundary from finite differences, along with our
suggested linear function and its corresponding exponential approximation.

7 The Approximate Cumulative EEP for American Puts

Recall the representation (21) of the EEP of a single American put as the value of the interest
earned on the strike price while the stock price is in the stopping region. This representation
allows us to compute directly the excess of SPIKES2 over V IX2 arising from the EEP of all
of the OTM puts. Suppose for simplicity that we consider the early exercise premium arising
only from the time interval [Td, T ]. Define G̃(S̃; b, g) =

∫ F0

0
f(S̃; bK, g)dK where the boundary

L has been expressed as proportional to the strike price of the option. Then integrating the
early premium over the the portfolio of OTM puts, we obtain the total contribution of the
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OTM puts to SPIKES2 :

TotEp(0) =

∫ F0

0

2

K2
ep(0, K)dK = EQ[e−rTdG(S̃Td ; b, g)− e−rTG(S̃T ; b, g)]. (28)

By integrating the function f̃(S̃; bK, g) with respect to K, we obtain:

G̃(S̃; b, g) =
4r

σ2(p+ − p−)

[
1{S̃<bF0}

((
1

p+
− 1

p−

)
log

F0b

S̃
+

1

(p+)2

(
S̃p

+

(F0b)p
+ − 1

)
+

1

(p−)2

)

+1{S̃>bF0}
S̃p

−

(bF0)p
−

]
.

After discounting and taking expectations, we get EQ
[
e−rtG̃(S̃t)

]
=

2e−rt
[(

log
F0e

gtb

S0(1− q)er−σ2/2
− 2r

σ2(p+ − p−)

(
1

(p+)2
− 1

(p−)2

))
N
(
−d2(0, t, S0(1− q), F0be

gt)
)

+σ
√
tN ′
(
−d2(0, t, S0(1− q), F0be

gt)
)]

+
4r

σ2(p+ − p−)
1

(p+)2

(
S0(1− q)
F0b

)p+
N
(
−d2(0, t, S0(1− q), F0be

gt)− σp+
√
t
)

+
4r

σ2(p+ − p−)
1

(p−)2

(
S0(1− q)
F0b

)p−
N
(
d2(0, t, S0(1− q), F0be

gt)+σp−
√
t
)
.

The total contribution of the EEP from the American calls should also be added in order to
obtain the overall approximated difference between SPIKES2 and V IX2. This can be done
easily since the EEP for American calls is just the difference in value between a Bermudan
call and a European call, which is available in closed form.

8 Numerical Results

In this section, we compute the difference between SPIKES2 and V IX2, and the difference
between SPIKES − V IX according to the values obtained via a Crank Nicolson finite
difference scheme. We consider four different cases, the dividend is paid one week from now,
two weeks from now, three weeks from now, and no dividend is paid by maturity, which is
one month in this example. For each case, we fix S0 = 100, σ = 0.2, and T = one month. We
let r and q vary to test how interest rates and dividend yields affect the difference between
SPIKES2 and V IX2, and the difference between SPIKES and V IX.

22



To calculate the European option prices used in the V IX2 computation, we linked the annu-
alized continuously paid dividend yield δ to the annualized quarterly proportion q used for
SPIKES2 via δ = − log (1− q). The integration range for strikes with spot at S0 = 100 is
truncated at K1 = 30 and K2 = 200.

In Table 3 and Table 4, we report examples for the value of the total difference between
SPIKES2 and V IX2 and the total difference between SPIKES and V IX for several pairs
of r and q. We find that when q is very small, 1%, the total difference for both SPIKES2−
V IX2 and SPIKES − V IX is negative. When r is fixed, increasing q increases the total
premium.

SPIKES-VIX
Closed Form r q No. div. Td = 1 week Td = 2 weeks Td = 3 weeks

0.01 0.01 1.30E-05 -0.000412626 -0.000267007 -7.43E-06
0.01 0.03 -3.66E-05 0.000605388 0.000895968 0.001314416
0.01 0.05 -0.000138456 0.001479321 0.002113966 0.002837513
0.01 0.1 -0.000642321 0.005388662 0.006800814 0.008049942
0.03 0.01 6.84E-05 -0.000417121 -0.000299388 -5.03E-05
0.03 0.03 1.87E-05 0.000591923 0.000846527 0.001260788
0.03 0.05 -8.32E-05 0.001442414 0.002036384 0.002767697
0.03 0.1 -0.00058665 0.005298913 0.006696017 0.007975492
0.05 0.01 0.000144085 -0.000414529 -0.000307816 -7.28E-05
0.05 0.03 9.45E-05 0.000589764 0.000823671 0.001228497
0.05 0.05 -7.21E-06 0.001423155 0.001988289 0.002720695
0.05 0.1 -0.00051032 0.005240393 0.006629515 0.007928368
0.1 0.01 0.000407422 -0.000365409 -0.000226749 -5.29E-05
0.1 0.03 0.000357488 0.000650452 0.000877054 0.001224064
0.1 0.05 0.0002564 0.001474059 0.001987673 0.002680582
0.1 0.1 -0.000245625 0.005264258 0.006607929 0.00789735

Table 3: SPIKES-VIX computed with the approximation formulas

One naturally wonders whether OTM calls or OTM puts are more important in explaining
the cumulative EEP across strikes. In the Appendix, we collect all outcomes for the separate
contributions of OTM calls and OTMs put to the total EEP and hence to the difference
between SPIKES2 and V IX2.
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SPIKES-VIX
Finite Difference r q No. div. Td = 1 week Td = 2 weeks Td = 3 weeks

0.01 0.01 0.000013 -0.000413 -0.000267 -0.000007
0.01 0.03 -0.000037 0.000605 0.000896 0.001314
0.01 0.05 -0.000138 0.001479 0.002114 0.002838
0.01 0.10 -0.000642 0.005389 0.006801 0.008050
0.03 0.01 0.000068 -0.000417 -0.000299 -0.000050
0.03 0.03 0.000019 0.000592 0.000847 0.001261
0.03 0.05 -0.000083 0.001442 0.002036 0.002768
0.03 0.10 -0.000587 0.005299 0.006696 0.007975
0.05 0.01 0.000144 -0.000415 -0.000308 -0.000073
0.05 0.03 0.000095 0.000590 0.000824 0.001228
0.05 0.05 -0.000007 0.001423 0.001988 0.002721
0.05 0.10 -0.000510 0.005240 0.006630 0.007928
0.10 0.01 0.000407 -0.000365 -0.000227 -0.000053
0.10 0.03 0.000357 0.000650 0.000877 0.001224
0.10 0.05 0.000256 0.001474 0.001988 0.002681
0.10 0.10 -0.000246 0.005264 0.006608 0.007897

Table 4: Difference between SPIKES and V IX, according to Finite Difference for S0 = 100,
σ = 0.2 by letting r and q vary and when there is no dividend in the next month or one
dividend paid in 1,2 or 3 weeks respectively.
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9 Computing the Vega of SPIKES

Again, we proceed in steps.

9.0.1 Vega of an American Put

In this section, we compute the derivative with respect v = σ2 of the early exercise premium
of an American put with maturity T and strike K, assuming an exponential early exercise
boundary St = Legt. For a put, the calculation applies when no dividends are paid or in the
case of a single dividend, for the period just after the dividend date.

If T is large, then piecewise approximation of the early exercise boundary via a sequence of
exponential functions is a better approximation. Hence, the approach used here can be easily
extended.

Assume that a single dividend is to be paid at Td. The early exercise premium at time t = 0

of an American put with strike K and maturity T , relative to the period [Td, T ], is given
by (NOTE THAT IN ORDER TO OBTAIN THE OVERALL PREMIUM WE HAVE TO
ADD THE PREMIUM FOR EXERCISING BEFORE Td).

ẽp(0, K) = e−rTdEQ
[
f̃(S̃Td)− EQTd

[
e−r(T−Td)f̃(S̃T )

]]
= EQ

[
e−rTd f̃(S̃Td)

]
− EQ

[
e−rT f̃(S̃T )

]
where we have

EQ
[
e−rtf̃(S̃t)

]
= Ke−rtN

(
−d2(0, S0(1− q), Legt, t)

)
− 2rK

σ2(p+ − p−)
1

p+

(
S0(1− q)

L

)p+
N
(
−d+2 (0, S0(1− q), Legt, t)

)
− 2rK

σ2(p+ − p−)
1

p−

(
S0(1− q)

L

)p−
N
(
d−2 (0, S0(1− q), Legt, t)

)

since 2r
σ2(p+−p−)

(
1
p+
− 1

p−

)
= 1 and where d−2 (0, S0, Le

gt, t) = d2(0, S0, Le
gt, t) + p−σ

√
t and

d+2 (0, S0, Le
gt, t) = d2(0, S0, Le

gt, t) + p+σ
√
t.

The above value is the sum of three terms that we denote by I(σ, t), II(σ, t), III(σ, t). Com-
puting the partial derivative of each term w.r.t. σ, we get:

∂

∂σ
I(σ, t) = −Ke−rtn

(
−d2(0, S0, Le

gt, t)
) ∂d2(0, S0, Le

gt, t)

∂σ
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∂

∂σ
II(σ, t) = − ∂

∂σ

(
2rK

σ2(p+ − p−)
1

p+

(
S0

L

)p+)
N
(
−d+2 (0, S0, Le

gt, t)
)

+
2rK

σ2(p+ − p−)
1

p+

(
S0

L

)p+
n
(
−d+2 (0, S0, Le

gt, t)
) ∂d+2 (0, S0, Le

gt, t)

∂σ

and:

∂

∂σ
III(σ, t) = − ∂

∂σ

(
2rK

σ2(p+ − p−)
1

p−

(
S0

L

)p−)
N
(
d−2 (0, S0, Le

gt, t)
)

− 2rK

σ2(p+ − p−)
1

p−

(
S0

L

)p−
n
(
d−2 (0, S0, Le

gt, t)
) ∂d−2 (0, S0, Le

gt, t)

∂σ

Summing the above three terms leads to the desired partial derivative, which is hence available
in closed form, although the exact computation is quite long and tedious. The derivative with
respect to σ of the early exercise premium relative to the life of the option after Td is obtained
as the difference:

∂

∂σ
ẽp(0, K) =

∂

∂σ
I(σ, Td)+

∂

∂σ
II(σ, Td)+

∂

∂σ
III(σ, Td)−!

∂

∂σ
I(σ, T )+

∂

∂σ
II(σ, T )+

∂

∂σ
III(σ, T )

(29)

In Tables 9,10,11,12 in the Appendix, we exhibit the differences between SPIKES Vega and
VIX Vega for various values of parameters r, q and σ.

10 Conclusions and Future Research

When SPIKES is back-calculated to 2005, it hardly differs from VIX. We used the benchmark
BMS model to assess whether this negligible difference would continue. So long as 30 day US
interest rates and annualized dividend yields continue to be range bound between 0 and 10
% per year, we conclude that this negligible difference will continue. The prices of the near
and next maturity OTM options used to calculate both SPIKES and VIX respond primarily
to volatility, not interest rates and dividends. While the EEP embedded in American put
and call prices have some sensitivity to these carrying costs, an increase in either rate leads
to a mixed response in the EEP of puts and calls.

Future theoretical research can investigate whether these initial conclusions are robust to the
assumptions made in the benchmark BMS model that interest rates, dividend yields, and
variance rates are constant. When all three of these rates are allowed to be stochastic, the
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extra optionality in an American option gives its holder the right to swap an exposure based
primarily on volatility for a swap between interest and dividends. The EEP should rise due
to this extra volatility value and hence so should the gap between SPIKES and VIX. The
magnitude of the rise in this gap is a subject best left for future research.

Tables with all outcomes are summed up here.

Table 5: Calls and Puts contribution to SPIKES2-V IX2: no dividend paid during SPY
options lifetime.

Interest Rate Dividend Rate Call Premium Put Premium
0.01 0.01 0.001454794 -0.000805239
0.01 0.03 0.001290196 -0.000662787
0.01 0.05 0.001114029 -0.000530795
0.01 0.1 0.000620801 -0.000243255
0.03 0.01 0.001452367 -0.000803898
0.03 0.03 0.001288041 -0.000661683
0.03 0.05 0.001112182 -0.000529911
0.03 0.1 0.000619764 -0.00024285
0.05 0.01 0.001449951 -0.000802559
0.05 0.03 0.0012859 -0.000660581
0.05 0.05 0.001110329 -0.000529028
0.05 0.1 0.000618735 -0.000242445
0.1 0.01 0.001443918 -0.000799222
0.1 0.03 0.001280548 -0.000657834
0.1 0.05 0.001105702 -0.000526829
0.1 0.1 0.000616152 -0.000241437
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Table 6: Calls and Puts contribution to sPIKES2-V IX2: a single dividend is paid during
SPY options lifetime in Td = 1 week.

Interest Rate Dividend Rate Call Premium Put Premium

0.01 0.01 -7.80E-05 8.88E-05
0.01 0.03 -0.000235692 0.000231281
0.01 0.05 -0.000381155 0.000363273
0.01 0.1 -0.000606554 0.00065081
0.03 0.01 -7.80E-05 8.88E-05
0.03 0.03 -0.000238416 0.000230991
0.03 0.05 -0.000390733 0.000362764
0.03 0.1 -0.000644965 0.000649832
0.05 0.01 -7.78E-05 8.91E-05
0.05 0.03 -0.000240016 0.000231057
0.05 0.05 -0.000398284 0.000362602
0.05 0.1 -0.00068005 0.000649191
0.1 0.01 -7.75E-05 9.32E-05
0.1 0.03 -0.00024079 0.000234633
0.1 0.05 -0.000409603 0.000365643
0.1 0.1 -0.000754455 0.00065104
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Table 7: Calls and Puts contribution to SPIKES2-V IX2: a single dividend is paid during
SPY options lifetime in Td = 2 weeks.

Interest Rate Dividend Rate Call Premium Put Premium

0.01 0.01 -7.33E-05 8.90E-05
0.01 0.03 -0.000189698 0.000231473
0.01 0.05 -0.000265527 0.000363469
0.01 0.1 -0.000275561 0.000651003
0.03 0.01 -7.60E-05 9.04E-05
0.03 0.03 -0.000200381 0.000232603
0.03 0.05 -0.000284308 0.000364381
0.03 0.1 -0.000315185 0.000651436
0.05 0.01 -7.74E-05 9.32E-05
0.05 0.03 -0.00020971 0.000235215
0.05 0.05 -0.000301732 0.000366779
0.05 0.1 -0.000353347 0.000653359
0.1 0.01 -7.75E-05 0.000106733
0.1 0.03 -0.000227261 0.000248123
0.1 0.05 -0.000339285 0.00037913
0.1 0.1 -0.000442443 0.000664521
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Table 8: Calls and Puts contribution to SPIKES2-V IX2: a single dividend is paid during
SPY options lifetime in Td = 3 weeks.

Interest Rate Dividend Rate Call Premium Put Premium

0.01 0.01 -6.13E-05 8.95E-05
0.01 0.03 -0.000130176 0.000231913
0.01 0.05 -0.000150251 0.000363906
0.01 0.1 -2.26E-05 0.000651437
0.03 0.01 -6.69E-05 9.23E-05
0.03 0.03 -0.000143021 0.000234472
0.03 0.05 -0.000168961 0.000366243
0.03 0.1 -5.47E-05 0.000653305
0.05 0.01 -7.16E-05 9.66E-05
0.05 0.03 -0.000155144 0.000238554
0.05 0.05 -0.00018702 0.000370099
0.05 0.1 -8.63E-05 0.000656685
0.1 0.01 -7.75E-05 0.000112425
0.1 0.03 -0.000182191 0.000253819
0.1 0.05 -0.000229235 0.000384813
0.1 0.1 -0.000162252 0.0006702

30



Table 9: Difference between SPIKES and VIX vega by letting r, q and σ vary:a no-dividends
during SPY options lifetime

VegaS-VegaV
r q sigma vega Put part sigma vega Call Part VegaTot

0.01 0.01 0.1 0.000223395 0.1 0.008339202 0.00856
0.01 0.01 0.2 0.000244711 0.2 -0.01035607 -0.01011
0.01 0.01 0.3 0.000258638 0.3 -0.01763977 -0.01738
0.01 0.01 0.4 0.000263185 0.4 0.009118929 0.00938
0.01 0.01 0.5 0.000278533 0.5 -0.05392467 -0.05365
0.01 0.01 0.6 0.000289901 0.6 0.040794324 0.04108
0.01 0.01 0.7 0.000291038 0.7 0.048344667 0.04864
0.01 0.03 0.1 0.000223821 0.1 0.004313266 0.00454
0.01 0.03 0.2 0.000245564 0.2 -0.00420946 -0.00396
0.01 0.03 0.3 0.000258638 0.3 0.025528576 0.02579
0.01 0.03 0.4 0.000262617 0.4 0.003133386 0.0034
0.01 0.03 0.5 0.00027967 0.5 -0.01680291 -0.01652
0.01 0.03 0.6 0.000287628 0.6 -0.03879451 -0.03851
0.01 0.03 0.7 0.000291038 0.7 0.004375966 0.00467
0.01 0.05 0.1 0.000223537 0.1 -0.00084119 -0.00062
0.01 0.05 0.2 0.000245279 0.2 0.028968646 0.02921
0.01 0.05 0.3 0.000258638 0.3 -0.0066992 -0.00644
0.01 0.05 0.4 0.000262048 0.4 -0.01316071 -0.0129
0.01 0.05 0.5 0.00027967 0.5 0.037121972 0.0374
0.01 0.05 0.6 0.000287628 0.6 -0.02643247 -0.02614
0.01 0.05 0.7 0.000292175 0.7 -0.01393524 -0.01364
0.01 0.1 0.1 0.000223679 0.1 0.006974911 0.0072
0.01 0.1 0.2 0.000244711 0.2 0.012848943 0.01309
0.01 0.1 0.3 0.000258638 0.3 -0.00991659 -0.00966
0.01 0.1 0.4 0.000263185 0.4 -0.00109004 -0.00083
0.01 0.1 0.5 0.000278533 0.5 0.056777013 0.05706
0.01 0.1 0.6 0.000289901 0.6 -0.00036272 -7.3E-05
0.01 0.1 0.7 0.000291038 0.7 0.032621228 0.03291
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Table 10: Difference between SPIKES and VIX vega by letting r, q and σ vary: discrete
dividends for SPY options paid at time Td = 1 week.

VegaS-VegaV
r q sigma vega Put part sigma vega Call Part VegaTot

0.03 0.01 0.1 0.000587406 0.1 -0.02009966 -0.01951
0.03 0.01 0.2 0.000650857 0.2 -0.00341143 -0.00276
0.03 0.01 0.3 0.000692637 0.3 -0.02601429 -0.02532
0.03 0.01 0.4 0.000723333 0.4 -0.00027234 0.00045
0.03 0.01 0.5 0.000749765 0.5 0.091610249 0.09236
0.03 0.01 0.6 0.000771934 0.6 -0.03677792 -0.03601
0.03 0.01 0.7 0.000794103 0.7 -0.01253206 -0.01174
0.03 0.03 0.1 0.000587406 0.1 -0.00095276 -0.00037
0.03 0.03 0.2 0.000650786 0.2 0.006415141 0.00707
0.03 0.03 0.3 0.000692637 0.3 -0.00711683 -0.00642
0.03 0.03 0.4 0.000723617 0.4 4.34E-12 0.00072
0.03 0.03 0.5 0.000750049 0.5 0.017284986 0.01804
0.03 0.03 0.6 0.000771649 0.6 0.038316718 0.03909
0.03 0.03 0.7 0.000793534 0.7 0.041746516 0.04254
0.03 0.05 0.1 0.000587406 0.1 0.006523424 0.00711
0.03 0.05 0.2 0.000650715 0.2 -0.00206317 -0.00141
0.03 0.05 0.3 0.000692495 0.3 0.019678134 0.02037
0.03 0.05 0.4 0.000723617 0.4 0.065942521 0.06667
0.03 0.05 0.5 0.000750049 0.5 -0.04449133 -0.04374
0.03 0.05 0.6 0.000771649 0.6 -0.03723885 -0.03647
0.03 0.05 0.7 0.000793534 0.7 0.005204544 0.006
0.03 0.1 0.1 0.000587441 0.1 0.008550079 0.00914
0.03 0.1 0.2 0.000650857 0.2 -0.06411739 -0.06347
0.03 0.1 0.3 0.000692637 0.3 -0.17861807 -0.17793
0.03 0.1 0.4 0.000723901 0.4 0.001161537 0.00189
0.03 0.1 0.5 0.00074948 0.5 -0.0099781 -0.00923
0.03 0.1 0.6 0.000771649 0.6 0.092116368 0.09289
0.03 0.1 0.7 0.000793534 0.7 -0.0082245 -0.00743
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Table 11: Difference between SPIKES and VIX vega by letting r, q and σ vary: discrete
dividends for SPY options paid at time Td = 2 weeks.
VegaS-VegaVix

r q sigma vega Put part sigma vega Call Part VegaTot

0.05 0.01 0.1 0.000909779 0.1 0.017668533 0.01858
0.05 0.01 0.2 0.001017924 0.2 -0.0079947 -0.00698
0.05 0.01 0.3 0.001087059 0.3 0.001007085 0.00209
0.05 0.01 0.4 0.001140421 0.4 -0.04206829 -0.04093
0.05 0.01 0.5 0.001185327 0.5 0.021870742 0.02306
0.05 0.01 0.6 0.001224691 0.6 -0.0067628 -0.00554
0.05 0.01 0.7 0.001261071 0.7 -0.06167975 -0.06042
0.05 0.03 0.1 0.000909814 0.1 0.013649521 0.01456
0.05 0.03 0.2 0.001017924 0.2 0.035760074 0.03678
0.05 0.03 0.3 0.001086988 0.3 0.000907543 0.00199
0.05 0.03 0.4 0.001140421 0.4 0.059913666 0.06105
0.05 0.03 0.5 0.001185327 0.5 0.00491936 0.0061
0.05 0.03 0.6 0.001224265 0.6 -0.01013951 -0.00892
0.05 0.03 0.7 0.001261071 0.7 -0.04417054 -0.04291
0.05 0.05 0.1 0.000909814 0.1 -0.00911493 -0.00821
0.05 0.05 0.2 0.001017888 0.2 0.009915428 0.01093
0.05 0.05 0.3 0.001086988 0.3 -0.00299156 -0.0019
0.05 0.05 0.4 0.001140421 0.4 0.018527191 0.01967
0.05 0.05 0.5 0.001185327 0.5 0.018440806 0.01963
0.05 0.05 0.6 0.001224407 0.6 0.03023588 0.03146
0.05 0.05 0.7 0.001260787 0.7 0.040372154 0.04163
0.05 0.1 0.1 0.000909779 0.1 -0.02637969 -0.02547
0.05 0.1 0.2 0.001017852 0.2 0.005457235 0.00648
0.05 0.1 0.3 0.001087059 0.3 -0.03697385 -0.03589
0.05 0.1 0.4 0.001140421 0.4 -0.05144974 -0.05031
0.05 0.1 0.5 0.001185327 0.5 -0.09880307 -0.09762
0.05 0.1 0.6 0.001224265 0.6 -0.03510227 -0.03388
0.05 0.1 0.7 0.001260787 0.7 -0.03487982 -0.03362
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Table 12: Difference between SPIKES and VIX vega by letting r, q and σ vary: discrete
dividends for SPY options paid at time Td = 3 weeks.

VegaS-VegaV
r q sigma vega Put part sigma vega Call Part VegaTot

0.1 0.01 0.1 0.001626885 0.1 0.003443527 0.00507
0.1 0.01 0.2 0.001846345 0.2 0.02664271 0.02849
0.1 0.01 0.3 0.001987033 0.3 -0.01574298 -0.01376
0.1 0.01 0.4 0.00209571 0.4 -0.02369572 -0.0216
0.1 0.01 0.5 0.002187264 0.5 0.157677241 0.15986
0.1 0.01 0.6 0.002267768 0.6 0.043872779 0.04614
0.1 0.01 0.7 0.002341451 0.7 -0.08648874 -0.08415
0.1 0.03 0.1 0.001626885 0.1 0.022871856 0.0245
0.1 0.03 0.2 0.001846345 0.2 0.025201291 0.02705
0.1 0.03 0.3 0.001986997 0.3 0.002142051 0.00413
0.1 0.03 0.4 0.002095781 0.4 0.015824855 0.01792
0.1 0.03 0.5 0.002187264 0.5 -0.01504297 -0.01286
0.1 0.03 0.6 0.002267768 0.6 -0.00967773 -0.00741
0.1 0.03 0.7 0.002341665 0.7 0.098902291 0.10124
0.1 0.05 0.1 0.001626868 0.1 -0.00215557 -0.00053
0.1 0.05 0.2 0.001846345 0.2 -0.03411346 -0.03227
0.1 0.05 0.3 0.001986997 0.3 -0.02315964 -0.02117
0.1 0.05 0.4 0.002095675 0.4 0.028724081 0.03082
0.1 0.05 0.5 0.002187193 0.5 0.022247784 0.02443
0.1 0.05 0.6 0.002267768 0.6 0.015490623 0.01776
0.1 0.05 0.7 0.002341451 0.7 0.039771438 0.04211
0.1 0.1 0.1 0.001626876 0.1 -0.00039496 0.00123
0.1 0.1 0.2 0.001846345 0.2 -0.08763561 -0.08579
0.1 0.1 0.3 0.001987033 0.3 -0.01207034 -0.01008
0.1 0.1 0.4 0.002095746 0.4 -0.09752849 -0.09543
0.1 0.1 0.5 0.002187193 0.5 -0.03023322 -0.02805
0.1 0.1 0.6 0.002267768 0.6 -0.04203318 -0.03977
0.1 0.1 0.7 0.002341594 0.7 -0.04769483 -0.04535
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